If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1x^2+14x+40=0
We add all the numbers together, and all the variables
x^2+14x+40=0
a = 1; b = 14; c = +40;
Δ = b2-4ac
Δ = 142-4·1·40
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6}{2*1}=\frac{-20}{2} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6}{2*1}=\frac{-8}{2} =-4 $
| 18+12(x+18)=234 | | 8x-3(2x-4)=3(x/6) | | y=6(-1)-14 | | 3x+1x=44 | | -5|6n+15|+2=43 | | 120+n=175 | | 120$+n=175 | | 1x^2+11x+24=0 | | 6+n=3n-10 | | 0.75x-12=-2x+10 | | –7j+6=–6j | | 6+n=3n−10 | | 5x+10x=700 | | 0=4/9x^-2/3 | | 80x-4-7x=23 | | -3=2x+18+9x | | 17x+(17+x)=530 | | 5=j–8 | | 8−7j=–8j | | −9|x+5|=−3|4x+20|+21 | | 1x^2+12x+32=0 | | 9(2y+6)-18y=37 | | 1–(2x +4)=–4x +5 | | X;4x+16=52 | | 8/x+3=19 | | –4−9q=4−8q | | 5(3–4t)=12+10t | | 2+m=–8−4m | | P=1/3.12p | | 2g−g=15 | | 1x^2+-18x+81=0 | | 9v=7+10v |